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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L · U = A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of
a 4 × 4 matrix A, for example, equation (2.3.1) would look like this:α11 0 0 0

α21 α22 0 0
α31 α32 α33 0
α41 α42 α43 α44

 ·
 β11 β12 β13 β14

0 β22 β23 β24

0 0 β33 β34

0 0 0 β44

 =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A · x = (L · U) · x = L · (U · x) = b (2.3.3)

by first solving for the vector y such that

L · y = b (2.3.4)

and then solving
U · x = y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows,

y1 =
b1
α11

yi =
1

αii

bi − i−1∑
j=1

αijyj

 i = 2, 3, . . . , N

(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2)–
(2.2.4),

xN =
yN
βNN

xi =
1

βii

yi − N∑
j=i+1

βijxj

 i = N − 1, N − 2, . . . , 1
(2.3.7)
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Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N2 executions
of an inner loop containing one multiply and one add. If we have N right-hand
sides which are the unit column vectors (which is the case when we are inverting a
matrix), then taking into account the leading zeros reduces the total execution count
of (2.3.6) from 1

2N
3 to 1

6N
3, while (2.3.7) is unchanged at 1

2N
3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.

Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the
i, jth component of equation (2.3.1) or (2.3.2). That component always is a sum
beginning with

αi1β1j + · · · = aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j : αi1β1j + αi2β2j + · · ·+ αiiβij = aij (2.3.8)

i = j : αi1β1j + αi2β2j + · · ·+ αiiβjj = aij (2.3.9)

i > j : αi1β1j + αi2β2j + · · ·+ αijβjj = aij (2.3.10)

Equations (2.3.8)–(2.3.10) totalN2 equations for theN2 +N unknown α’s and
β’s (the diagonal being represented twice). Since the number of unknowns is greater
than the number of equations, we are invited to specifyN of the unknowns arbitrarily
and then try to solve for the others. In fact, as we shall see, it is always possible to take

αii ≡ 1 i = 1, . . . , N (2.3.11)

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set ofN2 +N equations (2.3.8)–(2.3.11) for all theα’s and β’s by just arranging
the equations in a certain order! That order is as follows:

• Set αii = 1, i = 1, . . . , N (equation 2.3.11).
• For each j = 1, 2, 3, . . . , N do these two procedures: First, for i =

1, 2, . . . , j, use (2.3.8), (2.3.9), and (2.3.11) to solve for βij , namely

βij = aij −
i−1∑
k=1

αikβkj . (2.3.12)

(When i = 1 in 2.3.12 the summation term is taken to mean zero.) Second,
for i = j + 1, j + 2, . . . , N use (2.3.10) to solve for αij, namely

αij =
1

βjj

(
aij −

j−1∑
k=1

αikβkj

)
. (2.3.13)

Be sure to do both procedures before going on to the next j.
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Figure 2.3.1. Crout’s algorithm for LU decomposition of a matrix. Elements of the original matrix are
modified in the order indicated by lower case letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

If you work through a few iterations of the above procedure, you will see that
the α’s and β’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding αij or βij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements αii (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of α’s and β’s,

β11 β12 β13 β14

α21 β22 β23 β24

α31 α32 β33 β34

α41 α42 α43 β44

 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element
for the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
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method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of i = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the
upper limit of the sum is k = j − 1 (= i − 1). This means that we don’t have to
commit ourselves as to whether the diagonal element βjj is the one that happens
to fall on the diagonal in the first instance, or whether one of the (undivided) αij’s
below it in the column, i = j+1, . . . , N , is to be “promoted” to become the diagonal
β. This can be decided after all the candidates in the column are in hand. As you
should be able to guess by now, we will choose the largest one as the diagonal β
(pivot element), then do all the divisions by that element en masse. This is Crout’s
method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison as if we had initially scaled all
the equations to make their maximum coefficient equal to unity; this is the implicit
pivoting mentioned in §2.1.

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-20; A small number.

void ludcmp(float **a, int n, int *indx, float *d)
Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a rowwise
permutation of itself. a and n are input. a is output, arranged as in equation (2.3.14) above;
indx[1..n] is an output vector that records the row permutation effected by the partial
pivoting; d is output as ±1 depending on whether the number of row interchanges was even
or odd, respectively. This routine is used in combination with lubksb to solve linear equations
or invert a matrix.
{

int i,imax,j,k;
float big,dum,sum,temp;
float *vv; vv stores the implicit scaling of each row.

vv=vector(1,n);
*d=1.0; No row interchanges yet.
for (i=1;i<=n;i++) { Loop over rows to get the implicit scaling informa-

tion.big=0.0;
for (j=1;j<=n;j++)

if ((temp=fabs(a[i][j])) > big) big=temp;
if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
No nonzero largest element.
vv[i]=1.0/big; Save the scaling.

}
for (j=1;j<=n;j++) { This is the loop over columns of Crout’s method.

for (i=1;i<j;i++) { This is equation (2.3.12) except for i = j.
sum=a[i][j];
for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
a[i][j]=sum;

}
big=0.0; Initialize for the search for largest pivot element.
for (i=j;i<=n;i++) { This is i = j of equation (2.3.12) and i = j+1 . . . N

of equation (2.3.13).sum=a[i][j];
for (k=1;k<j;k++)
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sum -= a[i][k]*a[k][j];
a[i][j]=sum;
if ( (dum=vv[i]*fabs(sum)) >= big) {
Is the figure of merit for the pivot better than the best so far?

big=dum;
imax=i;

}
}
if (j != imax) { Do we need to interchange rows?

for (k=1;k<=n;k++) { Yes, do so...
dum=a[imax][k];
a[imax][k]=a[j][k];
a[j][k]=dum;

}
*d = -(*d); ...and change the parity of d.
vv[imax]=vv[j]; Also interchange the scale factor.

}
indx[j]=imax;
if (a[j][j] == 0.0) a[j][j]=TINY;
If the pivot element is zero the matrix is singular (at least to the precision of the
algorithm). For some applications on singular matrices, it is desirable to substitute
TINY for zero.
if (j != n) { Now, finally, divide by the pivot element.

dum=1.0/(a[j][j]);
for (i=j+1;i<=n;i++) a[i][j] *= dum;

}
} Go back for the next column in the reduction.
free_vector(vv,1,n);

}

Here is the routine for forward substitution and backsubstitution, implementing
equations (2.3.6) and (2.3.7).

void lubksb(float **a, int n, int *indx, float b[])
Solves the set of n linear equations A·X = B. Here a[1..n][1..n] is input, not as the matrix
A but rather as its LU decomposition, determined by the routine ludcmp. indx[1..n] is input
as the permutation vector returned by ludcmp. b[1..n] is input as the right-hand side vector
B, and returns with the solution vector X . a, n, and indx are not modified by this routine
and can be left in place for successive calls with different right-hand sides b. This routine takes
into account the possibility that b will begin with many zero elements, so it is efficient for use
in matrix inversion.
{

int i,ii=0,ip,j;
float sum;

for (i=1;i<=n;i++) { When ii is set to a positive value, it will become the
index of the first nonvanishing element of b. We now
do the forward substitution, equation (2.3.6). The
only new wrinkle is to unscramble the permutation
as we go.

ip=indx[i];
sum=b[ip];
b[ip]=b[i];
if (ii)

for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
else if (sum) ii=i; A nonzero element was encountered, so from now on we

will have to do the sums in the loop above.b[i]=sum;
}
for (i=n;i>=1;i--) { Now we do the backsubstitution, equation (2.3.7).

sum=b[i];
for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
b[i]=sum/a[i][i]; Store a component of the solution vector X .

} All done!
}
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The LU decomposition in ludcmp requires about 1
3N

3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count
for solving one (or a few) right-hand sides, and is a factor of 3 better than the
Gauss-Jordan routine gaussj which was given in §2.1, and a factor of 1.5 better
than a Gauss-Jordan routine (not given) that does not compute the inverse matrix.
For inverting a matrix, the total count (including the forward and backsubstitution
as discussed following equation 2.3.7 above) is (1

3 + 1
6 + 1

2)N3 = N3, the same
as gaussj.

To summarize, this is the preferred way to solve the linear set of equations
A · x = b:

float **a,*b,d;
int n,*indx;
...
ludcmp(a,n,indx,&d);
lubksb(a,n,indx,b);

The answer x will be given back in b. Your original matrix A will have
been destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

lubksb(a,n,indx,b);

not, of course, with the original matrix A, but with a and indx as were already
set by ludcmp.

Inverse of a Matrix

Using the above LU decomposition and backsubstitution routines, it is com-
pletely straightforward to find the inverse of a matrix column by column.

#define N ...
float **a,**y,d,*col;
int i,j,*indx;
...
ludcmp(a,N,indx,&d); Decompose the matrix just once.
for(j=1;j<=N;j++) { Find inverse by columns.

for(i=1;i<=N;i++) col[i]=0.0;
col[j]=1.0;
lubksb(a,N,indx,col);
for(i=1;i<=N;i++) y[i][j]=col[i];

}

The matrix y will now contain the inverse of the original matrix a, which will have
been destroyed. Alternatively, there is nothing wrong with using a Gauss-Jordan
routine like gaussj (§2.1) to invert a matrix in place, again destroying the original.
Both methods have practically the same operations count.
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Incidentally, if you ever have the need to compute A−1 · B from matrices A
and B, you should LU decompose A and then backsubstitute with the columns of
B instead of with the unit vectors that would give A’s inverse. This saves a whole
matrix multiplication, and is also more accurate.

Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the
diagonal elements,

det =

N∏
j=1

βjj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a
decomposition of a rowwise permutation of it. Luckily, we have kept track of
whether the number of row interchanges was even or odd, so we just preface the
product by the corresponding sign. (You now finally know the purpose of setting
d in the routine ludcmp.)

Calculation of a determinant thus requires one call to ludcmp, with no subse-
quent backsubstitutions by lubksb.

#define N ...
float **a,d;
int j,*indx;
...
ludcmp(a,N,indx,&d); This returns d as ±1.
for(j=1;j<=N;j++) d *= a[j][j];

The variable d now contains the determinant of the original matrix a, which will
have been destroyed.

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In this case
you can modify the loop of the above fragment and (e.g.) divide by powers of ten,
to keep track of the scale separately, or (e.g.) accumulate the sum of logarithms of
the absolute values of the factors and the sign separately.

Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)
LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A + iC) · (x + iy) = (b + id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite ludcmp and lubksb
as complex routines. Complex modulus substitutes for absolute value in the construction of
the scaling vector vv and in the search for the largest pivot elements. Everything else goes
through in the obvious way, with complex arithmetic used as needed. (See §§1.2 and 5.4 for
discussion of complex arithmetic in C.)
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A quick-and-dirty way to solve complex systems is to take the real and imaginary
parts of (2.3.16), giving

A · x− C · y = b

C · x + A · y = d
(2.3.17)

which can be written as a 2N × 2N set of real equations,(
A −C
C A

)
·
(

x
y

)
=

(
b
d

)
(2.3.18)

and then solved with ludcmp and lubksb in their present forms. This scheme is a factor of
2 inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in
time, since the complex multiplies in a complexified version of the routines would each use
4 real multiplies, while the solution of a 2N × 2N problem involves 8 times the work of
an N ×N one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18)
is an easy way to proceed.
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2.4 Tridiagonal and Band Diagonal Systems
of Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take onlyO(N) operations, and the whole solution can be encoded
very concisely. The resulting routinetridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N ×N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is

b1 c1 0 · · ·
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

· · · 0 aN bN

 ·


u1

u2

· · ·
uN−1

uN

 =


r1

r2

· · ·
rN−1

rN

 (2.4.1)


